
Birthday Party
January 2024

C++ — 2 sec — 512 MB

Today is a jubilant day! Today is a wonderful day! Today is the anniversary of the
birthday of the matriarch founder of M.O.T.H.E.R. (affectionately known as Mum). All
the engineers at M.O.T.H.E.R. are organising a surprise party for Mum. It’s all very
hush-hush, don’t you know.

Because it’s being organised by computer engineers, Mum’s birthday party is to be held
online. Specifically, the engineers need to find a set of s interconnected computers on
their (sprawling) network − one for each of the s guests they’re going to invite.

The engineers have decided to call a set of s computers that are all directly connected to
each other a do of size s. A do that cannot be extended by adding another computer (that
would be directly connected to all other computers in the do) is maximal and has been
termed a social of size s. In order to play many rounds of low-latency pass-the-parcel,
the s computers must form a social.

To work out the number of guest they can invite, the engineers want to determine the
sizes of all the socials in their computer network.

INPUT You should continue to input lines containing two integers, a and b, until you
receive the input -1 -1. For each line, there is a direction connection between computers
a and b. No computer will have a direct connection to itself.

1 ≤ a, b ≤ 10,000

OUTPUT For each size of social (greater than 2) that appears in the computer
network, output the size, followed by the number of socials of that size, in the network.
Sizes should be outputted from smallest to largest and each size should be outputted on
a new line. Any sizes that do not appear in the network should not be outputted.

SAMPLE For example, suppose 8 computers are connected in a network, as shown
over-leaf. There are 3 socials of size 3: (1,2,3), (2,7,8), and (5,7,8); and 1 social of size
4: (4,5,6,7). There are no other socials.



INPUT OUTPUT

1 2 3 3

1 3 4 1

2 3

3 4

4 5

5 6

4 5

4 6

4 7

4 5

4 6

5 8

5 7

6 7

2 8

2 7

7 8

-1 -1

1 2 5 1

1 3

1 4

1 5

2 3

2 4

2 5

3 4

3 5

4 5

-1 -1


