Bumping Race

 $\begin{array}{c} \textit{July 2025} \\ \text{C++} - 2 \text{ SEC} - 512 \text{ MB} \end{array}$

The river in Oxbridge is very long and narrow, and the residents have invented an exhilarating rowing competition called a Bumping Race.

In this race, **n** boats are lined up along the river, labelled alphabetically. When the cannon is fired, all the boats begin racing, trying to catch the boat in front. If a boat is successful, a bump occurs; the 2 boats exit the race and their order is switched. For example, suppose there are 4 boats and boats B & C bump. The final order is ACBD.

However, after a bump all other boats continue to race. In the above example, after B & C bump, boats A & D can then bump, giving the final order: DCBA. Since the river is narrow, overtaking another boat is not possible, so D cannot bump A without C bumping B first.

With 4 boats, there are six possible final orders, given below in alphabetical order:

- ABCD No boats bump
- ABDC Boats C & D bump
- ACBD Boats B & C bump
- BACD Boats A & B bump
- BADC Boats A & B and C & D bump
- DCBA Boats B & C then A & D bump

INPUT You will be given two integers, \mathbf{n} and \mathbf{i} , denoting the number of boats and the desired alphabetical ordering, respectively.

 $1 \leq \mathbf{n} \leq 26$

OUTPUT Output a permutation of the first n letters of the alphabet, giving the ith alphabetical possible final order of n boats.

INPUT	OUTPUT
4 3	ACBD
5 10	DCBAE
12 500	BACDFEGHIKJL